周盼盼,工学博士,2019年本科毕业于北京化工大学,2024年博士毕业于浙江大学,师从陈立新教授。现就职于河海大学,任职讲师。周盼盼博士主要从事高性能固态储氢材料、制氢路径调控、氢同位素存储与抗毒化改性、计算材料学相关的研究工作,先后参与1项国家自然科学基金项目和2项国家重点研发计划项目,在Energy Storage Mater., Nature Commun., Chem. Eng. J., J. Mater. Sci. Technol., J. Mater. Chem. A, Rare Metals, J. Energy Storage, Int. J. Hydrog. Energy, J. Alloys Compd.等期刊发表SCI论文30余篇,其中一作(含共一)12篇,已申请或授权发明专利8项。其中,周盼盼博士利用机器学习实现C14型Laves合金室温吸放氢性能的预测,并针对质子交换膜燃料电池常温常压供氢系统定制出性能全面且性价比极高的合金成分,助力于我国首次实现了固态储氢发电并网(Energy Storage Mater., 63 (2023) 102964.)。
周盼盼简历
河海大学,材料科学与工程学院,讲师
教育经历
(1) 2019-09 至 2024.06, 浙江大学, 材料学, 博士 (导师:陈立新教授)
(2) 2015-09 至 2019-06, 北京化工大学, 材料科学与工程, 学士
科研与学术工作经历
(1) 2024-06 至 现在,河海大学,材料科学与工程学院,讲师
主持或参加科研项目(课题)(按时间倒序排序):
1. 国家重点研发计划:固态储氢系统集成优化及全工况氢热耦合研究(2022YFB4004302,参与)
2. 国家重点研发计划:高安全低压高密度固态储氢装置设计和制备技术(2019YFB1505100,参与)
3. 国家自然科学基金:基于碳负载金属硼氢化物储氢体系的吸放氢热力学与动力学双调控机制(52171223,参与)
代表性论文
第一作者(含共同)论文:
[1] P.P. Zhou, X.Z Xiao, X.Y. Zhu, Y.P. Chen, W.M. Lu, M.Y. Piao, Z.M. Cao, M. Lu, F. Fang, Z.N. Li, L.J. Jiang, and L.X. Chen. Machine learning enabled customization of performance-oriented hydrogen storage materials for fuel cell systems [J]. Energy Storage Materials, 2023, 63: 102964. (SCI IF: 20.4)
[2] P.P. Zhou, J.W. Zhang, J.P. Bi, X.Z. Xiao, Z.M. Cao, L.J. Zhan, H.H. Shen, M. Lu, Z.N. Li, Y.Y. Zhao, L. Wang, M. Yan, and L.X. Chen. Underlying factors of mega pressure hysteresis in cerium-rich CaCu5-type metal hydrides and effective modification strategies [J].Journal of Materials Chemistry A, 2023, 11: 25963-25972. (SCI IF: 11.9)
[3] P.P. Zhou, Z.M. Cao, X.Z. Xiao, L.J. Zhan, J.H. He, Y.Y. Zhao, L. Wang, M. Yan, Z.N. Li, and L.X. Chen. Development of RE-based and Ti-based multicomponent metal hydrides with comprehensive properties comparison for fuel cell hydrogen feeding system [J]. Materials Today Energy, 2023, 33: 101258. (SCI IF: 9.3)
[4] P.P. Zhou, Z.M. Cao, X.Z. Xiao, Z.F. Jiang, L.J. Zhan, Z.N. Li, L.J. Jiang, and L.X. Chen. Study on low-vanadium Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage [J]. International Journal of Hydrogen Energy, 2022, 47: 1710-1722. (SCI IF: 7.2)
[5] P.P. Zhou, Z.M. Cao, X.Z. Xiao, R.H. Li, Z.Q. Liang, H.K. Zhang, L.J. Zhan, Z.N. Li, L.J. Jiang, and L.X. Chen. Dynamically staged phase transformation mechanism of Co-containing rare earth-based metal hydrides with unexpected hysteresis amelioration [J]. ACS Applied Energy Materials, 2022, 5: 3783-3792. (SCI IF: 6.4)
[6] P.P. Zhou, Z.M. Cao, X.Z. Xiao, L.J. Zhan, S.Q. Li, Z.N. Li, L.J. Jiang, and L.X. Chen. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage [J]. Journal of Alloys and Compounds, 2021, 875: 160035. (SCI IF: 6.2)
[7] J. H. He1, P.P. Zhou1(共一), X.Z. Xiao, F. Chu, L.Z. Ouyang, B.Z. Liu, R.H. Li, Z.W. Huang, L.J. Hu, S.C. Yuan, T. Zhou, X.L. Fan, and L.X. Chen. Coupling architectural and electronic engineering over cobalt molybdenum intermetallic compound for boosting hydrogen generation from ammonia borane [J]. Chemical Engineering Journal, 2023, 474: 145604. (SCI IF: 15.1)
[8] Y.J. Zhang1, P.P. Zhou1(共一), X.Z. Xiao, J.P. Bi, X.Y. Zhang, H.Q. Kou, X. Huang, T. Tang, and L.X. Chen. Superior oxygen-resistance and intrinsic mechanisms of coherent Pd/Pd3Zr@ZrCo structure with excellent cycling durability [J]. Chemical Engineering Journal, 2024, 479: 147660. (SCI IF:15.1)
[9] J.P. Bi1, P.P. Zhou1(共一), X.Z. Xiao, Y.J. Zhang, H.Q. Kou, T. Tang, and L.X. Chen. General impurity gas blanket effect mechanism and elimination strategies for hydrogen storage materials [J]. Chemical Engineering Journal, 2024, 481, 148517. (SCI IF:15.1)
[10] Y. Liu1, P.P. Zhou1(共一), X.Z. Xiao, J.C. Qi, J.P. Bi, T. Ying, X.W. Feng, Y. Shi, W.H. Luo, and L.X. Chen. Deep insight of unique phase transition behaviors and mechanism in Zr2Co-H isotope system with ultra-low equilibrium pressure [J]. Rare Metals, 2024, 43(1): 212-224. (SCI IF:8.8)
[11] S.L. Mo1, P.P. Zhou1(共一), C.X. Li, J.J. Liu, and F. Wang. Atomic interface engineering: Strawberry-like RuO2/C hybrids for efficient hydrogen evolution from ammonia borane and water [J]. International Journal of Hydrogen Energy, 2021, 46: 22397-22408. (SCI IF:7.2)
[12] J.P. Bi1, P.P. Zhou1(共一), X.Z. Xiao, Z.Q. Liang, J.C. Qi, Y.J. Zhang, H.Q. Kou, T. Tang, and L.X. Chen. Achieving excellent CO2 poisoning resistance of ZrCo hydrogen isotope storage material by surface reconstruction strategy [J]. Journal of Alloys and Compounds, 2023, 954: 170220. (SCI IF:6.2)
[1] Y.X. Jia, P.P. Zhou, X.Z. Xiao, X.C. Wang, B. Han, J.C. Wang, F. Xu, L.X. Sun, and L.X. Chen. 0D/2D/3D hierarchical N-doped carbon nanocages and NbB2 nanocatalyst synergetic improvement strategy on reversible hydrogen storage performance of lithium borohydride [J]. Chemical Engineering Journal, 2024, 485: 150090. (SCI IF: 15.1)
[2] J.W. Zhang, P.P. Zhou, Z.M. Cao, P.C. Li, J.T. Hu, H.Y. Xiao, X.S. Zhou, H.H. Shen, and X.T. Zu. Composition and temperature influence on hydrogenation performance of TiZrHfMoxNb2–x high entropy alloys [J]. Journal of Materials Chemistry A, 2023, 11: 20623-20635. (SCI IF: 11.9)
[3] L.J. Zhan, P.P. Zhou, X.Z. Xiao, M. Lu, L.J. Jiang, Z.P. Li, M. Yan, and L.X. Chen. Optimal design and simulation investigation for high-density hydrogen storage tanks filled with rare earth-based (RE-Ca)(Ni-Co)5 optimized alloy [J]. Journal of Energy Storage, 2024, 89: 111878. (SCI IF: 9.4)
[4] Z.M. Cao, P.P. Zhou, X.Z. Xiao, L.J. Zhan, Z.F. Jiang, S. M. Wang, L.J. Jiang, and L.X. Chen. Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures [J]. Rare Metals, 2022, 41: 2588-2594. (SCI IF: 8.8)
[5] Z.M Cao, P.P. Zhou, X.Z. Xiao, H.K. Zhang, Y.X. Jia, L.J. Zhan, M.Y. Piao, Z.N. Li, L.J. Jiang, and L.X. Chen. Improved hydrogen ab-/desorption performance of Ti–Cr based alloys via dual-effect of oxide reduction and element substitution by minor Al additive [J]. International Journal of Hydrogen Energy, 2024, 53: 1123-1136. (SCI IF: 7.2)
[6] L.J. Zhan, P.P. Zhou, X.Z. Xiao, Z.M. Cao, M.Y. Piao, Z.N. Li, L.J. Jiang, Z.P. Li, and L.X. Chen. Numerical simulation and experimental validation of Ti0.95Zr0.05Mn0.9Cr0.9V0.2 alloy in a metal hydride tank for high-density hydrogen storage [J]. International Journal of Hydrogen Energy, 2022, 47: 38655-38670. (SCI IF: 7.2)
[7] Z.M. Cao, P.P. Zhou, X.Z. Xiao, L.J. Zhan, Z.N. Li, S.M. Wang, and L.X. Chen. Investigation on Ti–Zr–Cr–Fe–V based alloys for metal hydride hydrogen compressor at moderate working temperatures [J]. International Journal of Hydrogen Energy, 2021, 46: 21580-21589. (SCI IF: 7.2)
[8] Z.M. Cao, P.P. Zhou, X.Z. Xiao, L.J. Zhan, Z.F. Jiang, M.Y. Piao, S.M. Wang, L.J. Jiang, and L.X. Chen. Studies on Ti-Zr-Cr-Mn-Fe-V based alloys for hydrogen compression under mild thermal conditions of water bath [J]. Journal of Alloys and Compounds, 2022, 892: 162145. (SCI IF: 6.2)
[9] Z.M. Cao, P.P. Zhou, X.Z. Xiao, H.K. Zhang, M.Y. Piao, Y.P. Chen, Z.N. Li, L.J. Jiang, and L.X. Chen. Experimental and theoretical investigation on enhanced hydrogen storage performance of Ti-Cr-Mn-Fe based alloys modified by Nb substitution [J]. ACS Applied Energy Materials, 2024,7: 5091-5106.(SCI IF: 6.4)
[10] J.W. Zhang, P.P. Zhou, H.Y. Xiao, X.S. Zhou, H.H. Shen, and X.T. Zu. Composition complexity enhances the He retaining ability in Zr-based MPEAs [J]. Materials Charactization, 2024, 214: 114058. (SCI IF: 4.7)
[11] Y. Liu, Z.Y. Yang, P.P. Zhou, X.Z. Xiao, J.C. Qi, J.P. Bi, X. Huang, H.Q. Kou, and L. Chen. A review of classical hydrogen isotopes storage materials [J]. Materials Reports: Energy, 2024, 4: 100250. (SCI)
[12] X.C. Wang, Y.X. Jia, X.Z. Xiao, P.P. Zhou, J.P. Bi, J.C. Qi, L. Lv, F. Xu, L.X. Sun, and L.X. Chen. Robust architecture of 2D nano Mg-based borohydride on graphene with superior reversible hydrogen storage performance [J]. Journal of Materials Science and Technology, 2023, 146, 121-130. (SCI IF: 10.9)
[13] M.Y. Piao, X.Z. Xiao, Z.M. Cao, P.P. Zhou, L.J. Zhan, J.C. Qi, Z.N. Li, L.J. Jiang, and L.X. Chen. Low-cost vanadium-free Ti–Zr–Cr–Mn–Fe based alloys for metal hydride hydrogen compressor under mild conditions [J]. Materials Chemistry and Physics, 2023, 297, 127407. (SCI IF: 4.6)
[14] J.C. Qi, X. Huang, X.Z. Xiao, X.Y. Zhang, P.P. Zhou, S.Q. Zhang, R.H. Li, H.Q. Kou, F. Jiang, Y. Yao, J. F. Song, X.W. Feng, Y. Shi, W.H. Luo, and L.X. Chen. Isotope engineering achieved by local coordination design in Ti-Pd co-doped ZrCo-based alloys [J]. Nature Communication, 2024, 15, 2883. (SCI IF: 16.6)
[15] L.J. Zhan, Z.M. Cao, M.Y. Piao, X.Z. Xiao, P.P. Zhou, Y.P. Chen, Z.N. Li, L.J. Jiang, Z.P. Li, and L.X. Chen. Experimental and numerical study of metal hydride beds with Ti0.92Zr0.10Cr1.0Mn0.6Fe0.4 alloy for hydrogen compression [J]. Chemical Engineering Journal, 2023, 474, 145654. (SCI IF: 15.1)
[16] J.C. Qi, Z.Q. Liang, X.Z. Xiao, Z.D. Yao, P.P. Zhou, R.H. Li, L. Lv, X.Y. Zhang, H.Q. Kou, X. Huang, W.H. Luo, C.A. Chen, and L.X. Chen. Effect of isostructural phase transition on cycling stability of ZrCo-based alloys for hydrogen isotopes storage [J]. Chemical Engineering Journal, 2023, 455, 140571. (SCI IF: 15.1)
[17] M.Y. Piao, X.Z. Xiao, L.J. Zhan, Z.M. Cao, P.P. Zhou, J.C. Qi, M. Lu, Z.N. Li, L.J. Jiang, F. Fang, and L.X. Chen. Laves phase double substitution alloy design and device filling modification for Ti-based metal hydride hydrogen compressors [J]. International Journal of Hydrogen Energy, 2024, 50: 1358-1368. (SCI IF: 7.2)
[18] Z.M. Cao, M.Y. Piao, X.Z. Xiao, L.J. Zhan, P.P. Zhou, Z.N. Li, S.M. Wang, L.J. Jiang, F. Xu, L.X. Sun, and L.X. Chen. Development of (Ti-Zr)1.02(Cr-Mn-Fe)2-based alloys toward excellent hydrogen compression performance in water-bath environments [J]. ACS Applied Energy Materials, 2023, 6: 1913-1925. (SCI IF: 6.4)