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Abstract

Mechanical-milling induced solid-state amorphization (SSA) has been observed in some covalent metalloids (Si, Ge, Se), but never in
pure metals at room temperature. In this paper, a thermodynamic model was proposed for the SSA of the pure elements. In the model, a
large Gibbs free energy of a grain boundary, compared with the free energy of a crystalline–amorphous interface, provides driving force
for the amorphization. The critical grain size required for the SSA, therefore, can be determined from the condition when the Gibbs free
energy of the nanocrystalline state is equal to that of amorphous state. The predicted critical grain sizes for SSA generally agree with the
experimentally observed values for nonmetallic elements, but are much smaller than the minimum grain sizes of the metallic elements
obtained by long-time mechanical-milling.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Solid-state amorphization (SSA) from crystalline parent
phases has been intensively studied in the past few decades
(for reviews, see [1–3]). Techniques inducing SSA include
irradiation- and hydrogen-assisted amorphization, inter-
diffusion of metallic multi-layers, pressure-induced vitrifica-
tion, mechanically-driven amorphization, etc. Theoretical
explanations for SSA can be divided into atomistic lattice
instability and thermodynamically-driven. Atomistic mod-
els of the various SSA processes have one common feature
that they lead to static disordering of the parent crystalline
phase by incorporation of non-equilibrium defects. Due to
the incorporated atomic disorder, the crystalline phase is
driven into an instability at which the crystalline phase col-
lapses into an amorphous phase. Several lattice instability
models have been proposed for SSA. They include vibra-
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tional [4], elastic [5], topological [6], entropical [7] and Lind-
eman melting criterion [8]. From a thermodynamic aspect,
elemental mixing or accumulation of lattice imperfections
(point defects, dislocations, grain boundaries (GBs), chem-
ical disorder, etc.) raises the Gibbs free energy of the crystal-
line phase above that of the amorphous phase, and when
this occurs, SSA is possible [9–11].

Mechanically-driven SSA has been observed in many
binary alloy systems by mechanical alloying (MA) of the
corresponding elemental crystalline powder mixtures or
by mechanical-milling (MM) of the inter-metallic com-
pounds [2,3,12]. In the former case, negative heat of mixing
and fast diffusion of one of the elements favor the forma-
tion of amorphous alloy phases. In the latter case, the
MM induces not only accumulation of lattice defects but
also chemical disordering in the lattice, leading to SSA.
While most studies of mechanically-driven SSA have
focused on binary alloy systems, there are also a few
reports on amorphization of pure elements. Some covalent
metalloids (C, Si, Ge and Se) are amorphized by a variety
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Table 1
Experimentally observed critical grain sizes, D�obs:, and lattice expansions,
Da*, at the onset of the amorphization in Si [16,17], Ge [19] and Se [22] by
mechanical-milling process

Elements Si Ge Se

D�obs:ðnmÞ 3 2.5–3.5 13
Da* (%) 0.2 0.2–0.4 0.2
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Fig. 1. Schematic representation of a spherical nanocrystallite with a
diameter of D transformed into amorphous state within a nanocrystalline
sample. The grain boundary (GB) was transformed into a crystalline–
amorphous (C–A) interface after amorphization.
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of methods including ion-implantation [13], vapor deposi-
tion [14], indentation [15] and ball-milling. Upon MM, par-
tial and/or full amorphization have been observed in Si
[16–18], Ge [19] and Se [20–22]. The MM-induced SSA of
the metalloids were found to occur when the critical grain
sizes and the critical lattice expansions were reached, as
summarized in Table 1. In contrast to metalloids, the
amorphization of pure metals has never been realized by
MM at room temperature. Instead, the MM process pro-
duced nanocrystalline microstructures with minimum grain
sizes for all pure metals (for reviews, see Refs. [23,24]).

In this paper, a thermodynamic model was proposed for
the MM-induced SSA of pure elemental systems. Accord-
ing to this model, the critical grain sizes for SSA of different
metals and nonmetals were calculated and compared with
the experimental values.

2. Thermodynamic model

Based on the experimental observations [16–22], the
mechanical-milling process mainly introduces the GBs (or
grain-size-refinement), lattice expansion and the micro-
strain, etc. lattice imperfections into the initially crystalline
lattice, which increase the Gibbs free energy of the ball-
milled polycrystalline powders. When the Gibbs free
energy of the milled nanocrystalline system is enhanced
to be larger than that of the amorphous state, a driving
force for the amorphization, from the Gibbs free energy
difference between the two states, then exists.

Assuming that a spherical nanocrystallite with a diame-
ter of D was transformed into the amorphous phase within
a nanocrystalline sample, as schematically represented in
Fig. 1, the Gibbs free energy change DG(T) will be:

DGðT Þ ¼ 4p
3

D
2

� �3

ðDGv �DE1 þDE2Þ þ 4p
D
2

� �2

ðcca � cgbÞ;

ð1Þ
where DGv is the Gibbs free energy difference per unit vol-
ume between the amorphous and crystalline states. Assum-
ing that super-cooled liquid and amorphous phases are
identical and neglecting the heat capacity (cp) difference be-
tween the crystalline and amorphous states, DGv can be
approximated by [25]:

DGvðT Þ ¼
DHmðT m � T Þ

T m

; ð2Þ

where DHm represents the fusion enthalpy change and Tm

the melting temperature with the index denoting ‘‘melting’’.
DE1 represents the elastic energy density change (per unit
volume) due to the lattice expansion (resulted from vacan-
cies) and the microstrain (caused by dislocations), he2i1/2,
induced by ball-milling:

DE1 ¼
V nc � V c

V c

� �2

K þ ðhe2i1=2Þ2K; ð3Þ

where Vnc and Vc are the molar volumes of nanocrystalline
and crystalline phases, respectively, K is the bulk modulus
for the nanocrystalline solid. DE2 denotes the change in
strain energy density (per unit volume) resulting from the
volume change upon the amorphization. According to
Allen et al. [26]:

DE2 ¼
18lKe02f
4lþ 3K

; ð4Þ

where l is the shear modulus of the nanocrystalline solid,
and f is a factor to account for the effect of a free surface
on the strain energy density, which is taken to be 1.0 in
the present case. e 0 is the hydrostatic strain associated
with the fractional volume change during amorphization,
e0 ¼ 1

3
ðV a � V ncÞ=V nc, where Va is the molar volume of

amorphous state. cca and cgb are, respectively, the crystal-
line–amorphous (C–A) interfacial energy and the GB
energy of the nanocrystalline phase. In the present case,
cca is assumed to be temperature independent, and cgb is
temperature dependent. At the right side of Eq. (1),
(4p/3)(D/2)3[DGv � DE1 + DE2] is a bulk term, and 4p(D/
2)2(cca � cgb) is an area term.

When DG(T) = 0 and oDG(T)/oD = 0, the critical grain
sizes D�1ðT Þ and D�2ðT Þ can be calculated by:

D�1ðT Þ ¼
3

2
D�2ðT Þ ¼

6ðcgb � ccaÞ
DGv � DE1 þ DE2

: ð5Þ

D�1ðT Þ is the critical grain size where the SSA onset occurs
at temperature T, and D�2ðT Þ is the critical grain size where
the driving force for the SSA (or amorphization transfor-
mation velocity) is the largest.

3. Calculation results

3.1. DG(293) and D�1(293) of Si, Ge and Se

Using available data of DHm, Tm, Vnc, Vc, he2i1/2, K, l,
Va, cca and cgb for a certain element, the Gibbs free energy
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change, DG(293), at room temperature (T = 293 K) as a
function of the mean grain size, D, can be obtained based
on Eqs. (1)–(4).

From Ref. [27], DHm of the elemental Se is 6.694 kJ/mol
(e.g., 0.407 · 109 J/m3 with density of 4.80 g/cm3 and molar
mass of 78.96 g/mol) and Tm is 494 K. DGv(293) is there-
fore calculated as 165.6 · 106 J/m3 for the elemental
Se. Similarly, DGv(293) are calculated as 3464.5 and
2051.9 J/m3 for Si and Ge, respectively.

From Ref. [28], the Young’s modulus and Poisson’s
ratio of crystalline Se are 58 GPa and 0.447, respectively.
Therefore, the bulk modulus and the shear modulus of
crystalline Se can be calculated as K = 182.39 GPa and
l = 20.04 GPa. Here the modulus of nanocrystalline phase
is assumed to be equal to that of coarse-grained (CG) poly-
crystalline phase. The volume expansion, (Vnc � Vc)/Vc,
and the microstrain, he2i1/2, at the onset of the MM-
induced SSA of nanocrystalline Se were 0.30% and
0.39%, respectively [22]. DE1 was then calculated as
4.42 · 106 J/m3 for nanocrystalline Se. Similarly, DE1 for
nanocrystalline Si and Ge can be calculated as 8.48 and
10.65 · 106 J/m3 with the lattice expansions of 0.2% and
0.4%, respectively. Therefore, DE1 are much smaller than
DGv(293) values.

e 0 in Eq. (4) can be written as:

e0 ¼ 1=qa � 1=qnc

3ð1=qncÞ
; ð6Þ

because both nanocrystalline and amorphous phases have
the same molar mass. Here qnc and qa are the densities of
the nanocrystalline and amorphous phases at room tem-
perature. The density of amorphous phase, qa(T), has the
following relationship with temperature T:

qaðT Þ ¼ q0
a þ ðT � T mÞdqa=dT ; ð7Þ

where q0
a is the density of amorphous phase at melting

point Tm, and dqa/dT is temperature coefficient of the den-
sity of amorphous phase. For nanocrystalline Se, assuming
qnc = qc, where qc is the density of the CG Se at room tem-
perature, then qnc = 4.80 g/cm3 [27]. With the assumption
that the super-cooling liquid Se and amorphous Se are
identical, q0

a is 3.989 · 106 g/m3, and dqa/dT = �1.44 ·
103 g/Km3 [29] for amorphous Se. Therefore, qa of amor-
phous Se can be calculated as 4.278 · 106 g/m3 at room
temperature. So, e 0 is 0.041 for Se, and DE2 = 173.2 ·
106 J/m3 at room temperature, which is comparable with
DGv(293) value. Similarly, DE2 for Si and Ge are calculated
to be 967.7 and 245.9 J/m3, respectively.
Table 2
Lists of the Gibbs free energy differences per unit volume between the amorpho
the strain energy density changes, DE2, the grain boundary energies, cgb [30
calculated critical grain sizes, D�1ð293Þ, for SSA of the metalloid Se, Si and Ge

Elements DGv(293) (106 J/m3) DE1 (106 J/m3) DE2 (

Se 165.6 4.42 173.2
Si 3464.5 8.48 967.7
Ge 2051.9 10.65 245.9
The grain boundary free energy of nanocrystalline Se
prepared by crystallization from amorphous Se solid has
been found to be varied against the mean grain size [30].
With decreasing grain size from 23 to 8 nm, cgb of Se
decreased from 0.33 to 0.25 J/m2. Here cgb = 0.25 J/m2

was taken for nanocrystalline Se. cgb are not available
experimentally for nanocrystalline Si and Ge, even not
for CG polycrystalline Si and Ge. From simulation, the
average energies of high-angle GBs for crystalline Si and
Ge are found to be 1.46 [31] and 1.12 J/m2 [32], respec-
tively. Here it is assumed that the GB energy of nano-
crystalline phase is equal to that of CG polycrystalline
counterpart, as verified by Ref. [33]. The crystalline–amor-
phous interfacial energies, cca, for Se, Si and Ge are equal
to 0.021 [34], 0.167 and 0.176 J/m2 [35], respectively.

Table 2 lists the calculated values of the different terms
(DGv(293), DE1, DE2, cgb, cca) at the right side of Eq. (1)
for the elemental Se, Si and Ge at room temperature.
Fig. 2 shows the variations of DG(293), bulk term ((4p/
3)(D/2)3[DGv(293) � DE1 + DE2]) and area term (4p(D/
2)2(cca � cgb)) against the mean grain size D for the elemen-
tal Se at room temperature.

With refining D to 0, the bulk term decreases from posi-
tive (unfavorable to amorphization) to zero; while the area
term increases from negative (favorable to amorphization)
to 0. As a results, the Gibbs free energy change, DG(293),
which is the combination of the bulk and area terms,
decreases from positive to zero at D�1ð293Þ (=4.1 nm for
Se), then reaches a minimum value DG*(293) (= �1.766 ·
10�18 J) at D�2ð293Þ (=2.7 nm), finally trends to 0 with the
further refinement of D to 0. In other words, when D

was refined to the critical grain size D�1ð293Þ, the Gibbs free
energy of the milled nanocrystalline system is enhanced to
be equal to that of amorphous state, suggesting a thermo-
dynamic phase equilibria between the amorphous and
nanocrystalline states, or an onset of SSA; when D was fur-
ther refined to D�2ð293Þ, the driving force for SSA reaches
the largest value DG*(293).

The calculated D�1ð293Þ for Si and Ge are 1.8 and
2.5 nm, respectively, as listed in Table 2. These values are
in agreement with the experimentally observed critical
grain sizes, D�obs:, of SSA, as listed in Table 1. For the
SSA of nanocrystalline Se, D�1ð293Þ (=4.1 nm) is smaller
than D�obs: (13 nm). This is because the XRD peak-broaden-
ing method calculates the average grain size of the ball-
milled powders, and some existed large-sized grains will
enhance D�obs: above the actual grain size of SSA (e.g.,
D�1ð293ÞÞ.
us and crystalline states, DGv(293), the elastic energy density changes, DE1,
–32], the crystalline–amorphous interfacial energies, cca [34,35], and the
at room temperature

106 J/m3) cgb (J/m2) cca (J/m2) D�1(293) (nm)

0.25 [30] 0.021 [34] 4.1
1.46 [31] 0.167 [35] 1.8
1.12 [32] 0.176 [35] 2.5
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Fig. 2. The Gibbs free energy change after solid-state amorphization,
DG(293), and the bulk ((4p/3)(D/2)3[DGv(293) � DE1 + DE2]) and area
(4p(D/2)2(cca � cgb)) terms against the mean grain size D for the elemental
Se at room temperature. D�1ð293Þ (=4.1 nm) is the critical value for the
onset of SSA transformation and D�2ð293Þ (=2.7 nm) is the critical value
where the driving force for SSA reaches the largest (DG*(293) = �1.766 ·
10�18 J).
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3.2. DG(293) and D�1(293) of metallic elements

Similarly, the metallic critical grain sizes for the onset of
SSA at room temperature, D�1ð293Þ, can be calculated by
using the literature values.

During the calculation, DGv(293) for different metals are
calculated by using the values from Ref. [27]. DE1 was
ignored since it is much smaller than DGv(293) and DE2.
To calculate DE2 value, the shear modulus and bulk mod-
ulus are taken from Ref. [28], and the e 0 values for different
metals are calculated using the literature values from Ref.
[29].

The grain boundary energy of metals can be obtained
from different measurements [36] including precise calorim-
etry, zero creep [37,38], phase-boundary intersection and
calculation from dislocation theory, etc. The zero creep
measurement is the most well-tried method for different
metallic elements. In this method, the GB energy at the
temperature T close to melting point, cT

gb, is calculated from
the measured solid surface energy, cT

s , and the dihedral
angles of GB groove formed by thermal etching at the sur-
face by:

cT
gb ¼ ncT

s ; ð8Þ
Table 3
Values of grain boundary energies at temperature T, cT

gb, temperature coeffic
energies at room temperature (T = 293 K) and at 0 K, cRT

gb and c0
gb, for elemen

Elements Ag Al Au

cT
gbðJ=m2Þ 0.375 0.324 0.378

T (K) 1223 723 1273
dcT

gb=dT ð10�3J=m2KÞ �0.10 �0.12 �0.10

cRT
gb ðJ=m2Þ 0.468 0.376 0.476

c0
gb ðJ=m2Þ 0.497 0.411 0.505
where n can be calculated from the dihedral angles of GB
groove. Both cT

gb and cT
s are temperature dependent, and

the temperature coefficient of cT
s , dcT

s =dT , can be experi-
mentally measured or calculated. Therefore, the GB energy
at room temperature, cRT

gb , can be obtained from the values
of n, cT

s and dcT
s =dT assuming n is temperature independent

by:

cRT
s ¼ cT

s þ ð293� T ÞdcT
s =dT

cRT
gb ¼ ncRT

s

; ð9Þ

where cRT
s is solid surface energy at room temperature.

For elemental Ag, Al, Au, Cu, Fe, Ni and Pt, Ref. [39]
summarizes the values of cT

gb, dcT
gb=dT (calculated from n

and dcT
s =dT ). So, cRT

gb for these metals can be calculated by:

cRT
gb ¼ cT

gb þ ð293� T ÞdcT
gb=dT : ð10Þ

Table 3 lists the values of cT
gb, T, dcT

gb=dT and cRT
gb for ele-

mental Al, etc.
For the other metals, dcT

s =dT are not available from the
zero creep measurement. Ref. [40] gives the calculated val-
ues for dcT

s =dT , and Ref. [41] lists the recommended values
for solid surface energy at 0 K, c0

s . The n values for Co, Cr,
Mo, Nb, Sn, Ta, and W can be obtained from the zero
creep measurements [42–46]. The n values were taken as
1/3 for Cd, Hf, Ir, Pd, Rh, Ru, Ti, Zr and Zn, which can
not be found in literature. Therefore, cRT

s and cRT
gb for these

metals can be calculated according to Eq. (9). Table 4 lists
the values of c0

s , dcT
s =dT , cRT

s , n and cRT
gb for elemental Cd,

etc. The cca values of different metals were taken from
Ref. [47].

Table 5 lists the calculated values of DGv(293), DE2, cRT
gb ,

cca and D�1ð293Þ for above metals. The experimentally
observed minimum grain sizes during MM process, D�obs:,
for different metals [48–56] are also listed in Table 5.

From Table 5, D�1ð293Þ of the most metals are in the
range of 1–2 nm, except that D�1ð293Þ of Ag (2.0 nm), Cd
(3.6 nm), Sn (2.8 nm), Zr (2.1 nm) and Zn (2.5 nm) are lar-
ger than 2 nm. Compared with D�obs:, D�1ð293Þ is about one
order of magnitude smaller. This explains the reason that
the SSA of metals is difficult to occur at room temperature,
because ball-milling process can not refine the grain size to
the critical grain size required by SSA.

3.3. Temperature dependence of D�1(T) of metals

The calculated critical grain size for SSA, D�1ðT Þ, from
the thermodynamic model is temperature dependent,
ients of grain boundary energy, dcT
gb=dT , and calculated grain boundary

tal Ag, Al, Au, Cu, Fe, Ni and Pt [39]

Cu Fe Ni Pt

0.625 0.468 0.866 0.660
1198 1723 2333 1573
�0.10 �0.25 �0.20 �0.18

0.716 0.826 1.074 0.890
0.745 0.899 1.333 0.943



Table 4
Values of solid surface energies at 0 K, c0

s [41], temperature coefficients of solid surface energy, dcT
s =dT [40], solid surface energies at room temperature,

cRT
s , ratios of grain boundary energy to solid surface energy, n [42–46], the grain boundary energies at room temperature and at 0 K, cRT

gb and c0
gb, for the

metallic Cd, Co, Cr, Hf, Ir, Mo, Nb, Pd, Rh, Ru, Sn, Ta, Ti, W, Zr and Zn

Elements c0
s ðJ=m2Þ ½41� �dcT

s =dT ð10�2J=m2KÞ ½40� cRT
s ðJ=m2Þ n cRT

gb ðJ=m2Þ c0
gb ðJ=m2Þ

Cd 0.740 0.014 0.699 1/3 0.233 0.247
Co 2.550 0.020 2.491 0.39 [42] 0.972 0.995
Cr 2.300 0.017 2.250 0.4 [43] 0.900 0.920
Hf 2.150 0.011 2.118 1/3 0.706 0.717
Ir 3.000 0.016 2.953 1/3 0.984 1.000
Mo 3.000 0.014 2.959 0.30 [44] 0.888 0.900
Nb 2.700 0.014 2.659 0.36 [45] 0.957 0.972
Pd 2.050 0.016 2.003 1/3 0.668 0.683
Rh 2.700 0.016 2.653 1/3 0.884 0.900
Ru 3.050 0.017 3.000 1/3 1.000 1.017
Sn 0.675 0.011 0.643 0.24 [46] 0.154 0.162
Ta 3.150 0.014 3.109 0.28 [44] 0.858 0.882
Ti 2.100 0.013 2.062 1/3 0.687 0.700
W 3.675 0.015 3.631 0.37 [43] 1.344 1.360
Zr 2.000 0.011 1.968 1/3 0.656 0.667
Zn 0.990 0.018 0.937 1/3 0.312 0.330

The n values are estimated as 1/3 when they are not available from the literature.

Table 5
Lists of Gibbs free energy differences per unit volume between crystalline and amorphous states, DGv(293), strain energy density changes, DE2, grain
boundary energies at room temperature, cRT

gb , crystalline–amorphous interfacial energies, cca [47], calculated critical grain sizes, D�1ð293Þ at room
temperature, and experimentally observed minimum grain sizes by mechanical-milling, D�obs:, [48–56] for different metallic elements

Elements DGv(293) (106 J/m3) DE2 (106 J/m3) cRT
gb ðJ=m2Þ cca (J/m2) [47] D�1ð293Þ ðnmÞ D�obs:ðnmÞ

Ag 838.8 12.6 0.468 0.184 2.0 22 [48]
Al 740.8 33.4 0.376 0.154 1.7 22 [49]
Au 960.4 5.6 0.476 0.200 1.7 –
Cd 241.5 11.1 0.233 0.081 3.6 –
Co 2039.8 40.4 0.972 0.345 1.8 14 [50]
Cr 2015.5 108.3 0.900 0.381 1.5 9 [50]
Cu 1442.9 3.2 0.716 0.263 1.9 11 [51]
Fe 1627.7 115.8 0.826 0.326 1.7 8 [52]
Hf 1558.9 119.6 0.706 0.322 1.4 13 [50]
Ir 2725.5 293.6 0.984 0.466 1.0 6 [49]
Mo 3057.2 86.7 0.888 0.490 0.8 5 [53]
Nb 2169.7 59.8 0.957 0.399 1.5 9 [50]
Ni 2199.1 156.8 1.074 0.356 1.8 12 [49]
Pd 1666.3 3.8 0.668 0.302 1.3 7 [49]
Pt 1841.9 388.8 0.890 0.334 1.5 –
Rh 2251.2 163.4 0.884 0.384 1.2 7 [49]
Ru 2560.6 15.1 1.000 0.443 1.3 13 [50]
Sn 181.5 4.9 0.154 0.066 2.8 –
Ta 2640.6 26.4 0.858 0.477 0.9 6 [54]
Ti 1232.6 414.2 0.687 0.271 1.5 27 [55]
W 3420.3 71.6 1.344 0.590 1.3 9 [50]
Zr 1036.6 107.4 0.656 0.242 2.1 13 [50]
Zn 461.4 4.9 0.312 0.119 2.5 20a [56]

a Milled at liquid-nitrogen temperature.
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because the terms at the right side of Eq. (5) are varying
against the temperature. To simplify the calculation pro-
cess, the strain energy density, DE2, and the C–A interfacial
energy, cca, are assumed to be temperature independent for
metals, because both terms are much smaller than the
Gibbs free energy difference, DGv, and the GB energy,
cgb, respectively.
Table 6 lists the values of DGv(0) at 0 K for metals,
which were calculated from Eq. (2). Comparing Table 6
with Table 5, the DGv(0) is larger than the DGv(293) for
a certain metallic element. From Eqs. (8)–(10), the GB
energies at 0 K, c0

gb, can be calculated, as listed in Tables
3 and 4. Therefore, the critical grain size for SSA at 0 K,
D�1ð0Þ, can be calculated, as listed in Table 6. Except



Table 6
Lists of Gibbs free energy differences per unit volume between crystalline
and amorphous states at 0 K, DGv(0), grain boundary energies at 0 K, c0

gb,
and calculated critical grain sizes, D�1ð0Þ, for different metallic elements

Elements DGv(0) (106 J/m3) c0
gb ðJ=m2Þ D�1ð0Þ ðnmÞ

Ag 1099.9 0.497 1.7
Al 1079.7 0.411 1.4
Au 1229.7 0.505 1.5
Cd 476.5 0.247 2.0
Co 2445.0 0.995 1.6
Cr 2337.0 0.920 1.3
Cu 1840.1 0.745 1.6
Fe 1942.2 0.899 1.6
Hf 1765.8 0.717 1.3
Ir 3055.1 1.000 0.9
Mo 3402.1 0.900 0.7
Nb 2429.5 0.972 1.4
Ni 2648.8 1.333 2.1
Pd 1985.0 0.683 1.2
Pt 2150.0 0.943 1.4
Rh 2590.7 0.900 1.1
Ru 2897.0 1.017 1.2
Sn 432.3 0.162 1.3
Ta 2899.0 0.882 0.8
Ti 1451.5 0.700 1.4
W 3716.2 1.360 1.2
Zr 1202.4 0.667 1.9
Zn 799.6 0.330 1.6
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elemental Ni, D�1ð0Þ is smaller than D�1ð293Þ for a certain
metal.

Fig. 3 shows the calculated D�1ðT Þ against T for elemen-
tal Al. D�1ðT Þ decreases from 4.2 nm to 1.7 nm with decreas-
ing T from 933 K (melting point of Al) to 293 K. When
T = 0 K, D�1ð0Þ ¼1.4 nm. From literature, cryo-milling
can effectively decrease the D�obs: by reducing the dynamic
recovery [23]. Nevertheless, the cryo-milling still can not
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Fig. 3. The calculated critical grain size for the onset of SSA transfor-
mation, D�1ðT Þ, against temperature T for elemental Al. D�1ðT Þ decreases
with decreasing temperature.
refine the D�obs: close to the predicted D�1ðT Þ. To author’s
knowledge, there is no report that cryo-milling can realize
the SSA of pure metals in literature.
4. Discussion

To compare the thermodynamic-model predicted critical
grain sizes for SSA with the experimentally observed min-
imum grain sizes, Fig. 4 plots D�1ð293Þ versus D�obs:. The cal-
culated D�1ð293Þ have large uncertainties, because the
experimentally measured solid surface energies, grain
boundary energies and n values, etc. have large error bars
and the approximations were taken during calculations.
However, from Fig. 4, the present thermodynamic calcula-
tion can give a good explanation for the different behaviors
of metals and nonmetals during mechanical-milling pro-
cess. For metals, all the data points (open squares) are
located at the bottom-right corner of the figure, and the
data points of nonmetals (open circles) are at the top-left
corner. This means that for nonmetals, ball-milling can
refine the grain size close to the required critical grain sizes
for SSA (i.e., SSA is possible at room temperature), how-
ever, for metals, the minimum grain sizes realized by ball-
milling are much larger than the critical grain sizes required
by SSA (e.g., SSA is impossible at room temperature by
ball-milling process).

Fig. 4 also shows that, except for the data point of Ti,
D�1ð293Þ and D�obs: have a good relationship: D�obs: increases
with an increase of D�1ð293Þ, which means the larger critical
grain size for SSA, the more difficult for grain-refinement
(the larger minimum grain size) by ball-milling. The data
scattering is caused by the large uncertainties of both
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D�1ð293Þ and D�obs:. It has been found that D�obs: values are
also related with the detailed experimental conditions: such
as the milling energy and the ratio of ball-to-powder, etc.
[23]. Therefore, D�obs: from different groups may not be
comparable. The calculated D�1ð293Þ of Ti is probably smal-
ler, because the approximation of n as 1/3 may result in a
small GB energy. The observed D�obs: of Zn was obtained
by mechanical-milling at liquid-nitrogen temperature,
which is smaller than that milled at room temperature.
The relationship of D�1ð293Þ and D�obs: in Fig. 4 may give
an alternative explanation for the observed different D�obs:

values of different metals by mechanical-milling, except
for the dislocation recovery model [49,57–59]. This needs
further investigation which is beyond the main aim and
conclusion of the present paper.

From literature, the amorphous metals can be prepared
by low-temperature evaporation or sputtering [60–62],
because the low-temperature evaporation and sputtering
processes are totally different from the grain-refinement
by mechanical-milling. The formers form amorphous states
from ‘‘bottom-up’’ (atomic accumulation), while the later
from ‘‘top-down’’. The evaporated and sputtered atoms
were assembled on substrates, cooled by liquid helium or
nitrogen, with too low energy to crystallize. However, the
amorphous metals prepared by low-temperature evapora-
tion or sputtering are unstable and crystallize at tempera-
tures below room temperature. The thermodynamic
model proposed in the paper was based on grain-refine-
ment mechanisms of SSA. Another possible mechanism is
hydrostatic pressure. It was reported that Si and Ge in sin-
gle crystal form became amorphous under the indentor of a
hardness machine [15]. The pressures existing in ball-mill-
ing could be significant and may also be a possible source
of the amorphization, which is beyond the main scope of
this paper and needs further investigation.

5. Conclusion

In summary, a thermodynamic model was proposed for
the crystal-to-amorphous phase transition of pure elemen-
tal systems induced by mechanical-milling process. The
model predicts critical grain sizes required for the MM-
induced SSA of the pure elements, which can be deter-
mined from the Gibbs free energy balance between the
nanocrystalline and amorphous states. The predicted criti-
cal grain sizes for different elements agree generally with
the experimental observations.
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