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ABSTRACT: Many properties of materials are incompatible with
each other or even completely exclusive. Here, we proposed a new
concept in view of the trade-off paradox of material properties,
which is to macrodirectionally design the microstructure of
materials according to their specific service requirements to
accurately use the properties of materials to the extreme. By using
this concept, we successfully solved the paradox of high strength
and high conductivity of copper contact wire in a high-speed train.
Our concept can be used to solve the other property paradoxes of
functional and structural materials.

KEYWORDS: material property paradox, macrodirectional design of microstructure, ultrafine grained copper, electrical conductivity,
strength, thermal stability

■ INTRODUCTION

With the rapid development of modern industry, there is an
urgent need for multifunctional materials which have more
than two excellent properties at the same time.1 Unfortunately,
many excellent properties of materials rarely coexist, i.e. the so-
called property trade-off paradox. As a universal law of nature,
such paradoxes exist widely in the important properties of
structural and functional materials, such as energy and power
densities of battery materials,2 electrical conductivity and
Seebeck coefficient/thermal conductivity of thermoelectric
materials,3 polarization and breakdown strength of dielectric
materials,4 magnetization and coercivity of magnetic materi-
als,5 reactant mobility and catalytic active sites of catalytic
materials,6 strength and ductility/conductivity/thermal stabil-
ity of structural materials,10−12 etc. (Table 12−12). In the past
half century, mankind has launched a tenacious and
unremitting challenge to this difficult problem using emerging
nanotechnology. For example, a bimodal and heterogeneous
composite concept can optimize the properties more or less by
combining the corresponding microstructures favorable to
exclusive properties together.10,13,14

For the answer to the paradox of material performance, we
have to look for it from the artist of nature itself. To resist
transverse fracture and transport nutrients longitudinally,
bamboo and other trunks have evolved a fiber structure
along the longitudinal direction.15 In the same way, shells have
evolved a multilayer structure to resist vertical fracture, and
teeth have evolved nanostructures on their surfaces for wear
resistance.16 Nature has skillfully and finely optimized the
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Table 1. Lists of Typical Trade-offs between Conflicting
Properties I and II

materials property I property II ref

1 battery materials energy density power density, cycle life,
safety

2

2 thermoelectric
materials

electrical
conductivity

Seebeck coefficient,
thermal conductivity

3

3 dielectric
materials

polarization breakdown strength 4

4 permanent
magnetic
materials

coercivity magnetization 5

5 catalytic
materials

reactant mobility catalytic active sites 6

6 ferroelectric/
ferromagnetic
materials

ferromagnetism ferroelectricity 7

7 optoelectronic
materials

transparency conductivity 8

8 damping
materials

damping
capability

elastic modulus 9

9 structural
materials

strength ductility, formability,
deformability,
conductivity, thermal
stability

10−12
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microstructures of biological materials according to their
specific service requirements, thus evolving their multiple
functions. Compared with biological materials, the current
man-made materials are still simple. For example, from the
atomic structure, most of the artificial materials are single-
phase; from the performance point of view, most of them are
isotropic, which results in the material properties not being
fully utilized because the specific service parts are always
macroscopic and directional. Here, we propose a new concept
that the microstructure of materials should be macrodirection-
ally designed according to their specific working conditions. By
using this concept, the paradox of high strength and high
conductivity of the copper contact wire in a high-speed train
was successfully solved along axial direction.

■ RESULTS

Macrodirectional Preparation and Microstructures of
Ultrafine Grained Cu. We utilized rotary swaging (RS) to
prepare a Cu wire with fiber texture and overlong ultrafine
grains aligned along the wire axis. Specifically, we deformed an
annealed high-purity Cu rod (99.98%, Table S1 and Figure S1)
at room temperature under a high hydrostatic stress and a high
strain rate of approximately 1 s−1 (Figure S2 and Table S2). A
series of molds was employed to gradually decrease the Cu

diameter with different true deformation strains ε of 0.5, 1.0,
1.5, 2.0, and 2.5, respectively (Figure 1a, Figure S2c).
Microstructural evolutions of the swaged Cu are shown in

Figure 1b−e, Tables S3 and S4, and Figures S3−S5. During
the swaging process, the initial 54 μm equiaxed coarse grains
(CGs) were gradually elongated along the axial direction into
superlong columnar grains with an average diameter of 2.06
μm and a length of 339 μm when ε = 2.5 (Figure 1b, c-1, d-1;
Figure S4), as statistically measured from high-angle grain
boundaries (GBs) by electron backscattering diffraction
(EBSD). Moreover, The RS also introduced strong ⟨111⟩
and weak ⟨100⟩ fiber textures along the Cu axis as well as high-
density dislocations (Tables S3 and S5; Figures S3 and S6).
The dislocation density, estimated from EBSD average local
misorientation, is about 9.19 × 1014 m−2 when ε = 2.5. Parts of
dislocations self-organized into polygonized dislocation walls
(i.e., so-called dislocation cell boundaries) and formed
substructure or subgrains with low-angle GBs inside the
elongated CG grains (Figure 1c-2, d). Statistic results
measured from transmission electron microscopy (TEM)
indicated that the dislocation cell has an average width of
220 nm and length of 25.1 μm (Figure S5). High-resolution
TEM revealed zigzag low-angle GBs formed by polygonized
dislocation walls (Figure 1e). With increasing ε, the intensities

Figure 1.Microstructures of the swaged Cu with ε = 2.5. (a) Picture of initial CG and swaged Cu rods. (b) EBSD crystal orientation map from the
side view. (c) EBSD crystal orientation maps (c-1, c-3) and GB maps (c-2) from the top (c-1, c-3) and side (c-3) views. The insets are inverse pole
figures and color codes, respectively. Black and red lines in c-2 represent high-angle GBs (>15°) and low angle GBs between 2°and 15°,
respectively. (d) TEM images from the top (d-1) and side (d-2) views. The insets are selected area electron diffraction (SAED) patterns. (e) High-
resolution TEM image of low-angle GBs. Inverse Fourier transformation (e-4) revealed zigzag low-angle GBs formed by polygonized dislocation
walls.
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of ⟨111⟩ and ⟨100⟩ textures, dislocation density, and volume
fraction of low-angle GBs first increase significantly and then
tend to saturate or decrease slightly when ε = 2.5.
Mechanical Properties of the Swaged Cu. Quasistatic

tensile curves of the swaged Cu at room and liquid nitrogen
(LN) temperatures are shown in Figures 2a and S7. The CG
Cu has a yield strength of 60 MPa and tensile ductility
(elongation to failure) of 57%. The swaging process gradually
increases the yield strength up to 450 MPa and decreases the
ductility down to 10% when ε = 2.5 (Figure 2b). For the
swaged Cu, necking occurs immediately after yielding because
of nearly null strain hardening capability.10 The swaging
deformation consumed the strain hardening by saturating
dislocation accumulation. The ductility is enhanced to 13%,
and the strain hardening as well as uniform elongation were
also improved when the sample was tested at LN temperature.
Moreover, annealing at 573 K for 120 min further increased
the ductility up to 20% while still keeping the high yield

strength of 380 MPa. The above improved ductility and
uniform elongation are due to the further enhanced dislocation
accumulation capability.10,17,18 Calculations indicated that the
main strengthening mechanisms are from high-density
dislocations (Calculation S1).

Thermal Stability and Conductivity of the Swaged
Cu. Both isothermal and isochronal annealing were employed
to characterize the thermal stability of the swaged Cu, as
shown in Figures 2c, e, S7, and S8. The microhardness of the
finally swaged Cu is 1.25 GPa. It keeps constant when
annealed at 473 K until 400 min and slightly decreases to 1.15
GPa when annealed at 523 K for 600 min. Microstructural
investigations indicated that the grain size and morphology are
unchanged without any recrystallization, and the slight
hardness drop is due to dislocation recovery (Figure 2e).
Quantitative calculation also indicated that dislocation density
is reduced by 1 order of magnitude after annealing (Table S7).
An evident and rapid drop of hardness is observed when

Figure 2. Mechanical, thermal, and conductive properties of the swaged Cu with ε = 2.5. (a) Quasistatic tensile curves of the swaged and CG Cu
tested at room and LN temperatures. The necking onsets are marked by empty squares. (b) Yield strength and ductility (elongation to fracture)
versus swaging deformation stain. (c) Microhardness evolution during the isothermal annealing process at 473, 523, and 573 K. (d) Conductivity of
CG, swaged, and annealed Cu. (e) Microstructural evolutions during isothermal annealing.
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annealed at 573 K, and the recrystallization process appears at
120 min (Figure 2e). Thermodynamic calculation indicated
that the lamellar grain structure has a lower stored energy due
to the lower energy and volume fraction of low-angle GBs as
compared with equiaxed grains (Calculation S2).19 Kinetic
calculation revealed that the swaged Cu has higher activation
energy of recrystallization (Q = 150 J/molK) as compared to
equiaxed ultrafine grained Cu20 (72 J/molK) (Calculation S3),
which enhances thermal stability by retarding the recrystalliza-
tion process.
Four-point probe resistivity test at room temperature

indicated that the swaging process lowers the electrical
conductivity of CG Cu from approximately 100 to 97%
international annealed copper standard (IACS), as shown in
Figure 2d. It is surprising that annealing before recrystallization
increases the conductivity of the swaged Cu over that of the
CG Cu and up to a highest value of 103% IACS while still

keeping the yield strength above 380 MPa. Further calculation
indicates that the decreased conductivity of the swaged Cu is
due to the introduction of high-density dislocations which
scatter free electrons. The enhanced conductivity of the
annealed Cu was caused by significantly reduced high-angle
GB fraction along the conductive path (Calculation S4).

■ DISCUSSION

Figure 3a, b compares our results with literature data. Yield
strength and conductivity of Cu are always trade-offs with each
other, as shown by the dashed orange line for guidance.21−32

An exceptional data point (red circle) with a high yield
strength of 980 MPa and conductivity of 97% IACS was
obtained in nanotwinned Cu11 and basically follows the trade-
off rule because twin boundaries (TBs) still have a low electron
scattering effect.33 The underlying mechanism for trade-off is

Figure 3. Literature review for relations of yield strength and conductivity/thermal stability of pure Cu prepared by different severe plastic
deformation and powder sintering methods.21−32 (a) Yield strength versus conductivity. (b) Grain size versus annealing temperature. ED,
electrodeposition; SPS, spark plasma sintering; ECAP/R/E, equal-channel angular pressing/rolling/extrusion; DCT, deep cryogenic treatment;
LP/D, liquid pressing/drawing; DPD, dynamic plastic deformation; CR, cold rolling; SMGT, surface mechanical grinding treatment; LSEM, large
strain extrusion machining. (c) Schematic representations of microstructural evolutions of Cu during swaging and annealing processes and their
influences on mechanical and conductive properties. (d) Schematic representations of traditional optimization of trade-off properties and our
concept of macrodirectional design of microstructure according to the service direction.
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that GBs and dislocations for strengthening unavoidably
introduced the lattice imperfections and caused electron
scattering. It seems that the conductivity of the CG Cu is an
insurmountable limit, which was broken by our data points.
Strength and thermal stability of Cu are also consuming each
other, as shown by the dashed orange line in Figure 3b. The
final grain size increases linearly with increasing annealing
temperature12,19,20,27−31,34,35 because both GBs and disloca-
tions for strengthening simultaneously provide a driving force
for GB migration. Our data accompanied by two exceptional
cases for the nanotwinned36 and nanostructured Cu12 deviated
from the general rule and exhibited high thermal stability.
Figure 3c schematically illustrates microstructural evolutions

of Cu during swaging and annealing processes and their
influences on mechanical and conductive properties. For the
CG Cu, high-angle GBs are the main lattice imperfections that
influence conductivity (Figure 3c-1).37 Rotary swaging
simultaneously introduced the superlong grains along the Cu
wire axis and high density of dislocations in grain interiors.
Although the superlong grains enhanced conductivity along the
axis by reducing the fraction of high-angle GBs, the high
density of dislocations on the electron passageway still lowers
the conductivity down to about 97% IACS (Figure 3c-2).
Annealing prior to recrystallization swept away most
dislocations on the electron passageway and enhanced the
conductivity to over 100% IACS (Figure 3c-3). Finally, the
low-angle GBs with submicrometer interval increase the yield
strength via effectively blocking dislocation slip in the radial
direction (Figure 3c-4).
Different from the traditional concepts of bimodal or

heterogeneous composite in the literature (Figure 3d-1), our
concept aims to make macrodirectional design of micro-
structure according to the specific working direction so that the
performance of the material can be fully used, as schematically
shown in Figure 3d-2. Our concept can be used to solve the
other paradoxes of material properties. For battery, thermo-
electric, catalytic, etc. functional and structural materials, we
can design their microstructures purposefully according to the
macro working directions of charge and discharge, heat
conduction and conduction, reaction and loading, respectively.
Obviously, we have not changed the laws of nature of material
property paradox. The excellent properties in one direction
come at the expense of the properties in the other direction
(Figure 3d-2). This tells us that we do not have to spend our
energy to make perfect materials in all aspects, but to use steel
on the blade. Finally, the macrodesign of microstructure
(including grain size, morphology and orientation, etc.) can be
further expanded into the macrodesign of composition
(different elements), phase38 (different structures as face-
centered cubic, body-center cubic, and hexagonal-close
packed), etc. In this respect, gradient materials39 and
hierarchical microstructures40 can also be classified into this
category.

■ CONCLUSIONS

In brief, we proposed a concept of macrodirectional design of
materials’ microstructure based on their specific service
conditions. We further prepared a Cu wire with superlong
grains along the wire axis by rotary swaging, which exhibited
excellent thermal stability and high strength. IACS con-
ductivity of 103% was achieved by subsequent annealing
accompanied by the yield strength above 380 MPa. Our work

provides an alternative solution for the property trade-off
paradox.

■ METHODS

Materials and Rotary Swaging and Annealing
Processes. Fiber-textured ultrafine grained Cu rods with a
purity of 99.98% were synthesized by means of rotary swaging
at room temperature. The as-received Cu rods with a
dimension of Ø30 mm × 2000 mm were first annealed at
973 K for 2 h under Ar atmosphere to produce a coarse-
grained initial microstructure with an average grain size of ∼54
μm and free of texture. The annealed Cu bars were then rotary
swaged at room temperature down to Ø23.4, 18.2, 14.2, 11.1,
and 8.6 mm without intermediate annealing that corresponds
to true deformation degrees φ(= ln(A0/A), where A0 and A are
the initial and final cross-sectional areas) of 0.5, 1.0, 1.5, 2.0,
and 2.5, respectively. During swaging, four dies were first
utilized to arrange uniformly in the circumference of the Cu
rod; then, high speed rotation was performed around the Cu
rod, and high frequency short-range strokes were simulta-
neously made along the radial direction. The subsequent
annealing process was performed in a furnace with N2 gas as
protecting atmosphere at 473, 523, 573, 623, and 673 K,
respectively. As a result, we deformed the Cu rod.

Quasistatic Uniaxial Tensile Test. Uniaxial tensile tests
were performed using a LFM 20 kN (walter+bai, Switzerland)
tester with a strain rate of 1 × 10−3 s−1 at room and liquid-
nitrogen temperatures. The dog-bone-shaped tensile speci-
mens with dimensions of 1 × 3 × 20 mm3 were cut from the
central position of swaged rods with gauge length along the
swaging direction. Samples were clamped by hydraulic grips to
avoid slippage during the test. The strain was measured by
using a standard noncontacting video extensometer. Three
tensile specimens were tested to obtain reliable results.

Vickers Microhardness Test. Vickers microhardness tests
were performed using an HMV-G 21DT (Shimazdu, Japan)
tester with a load of 0.98 N and a dwell time of 15 s. The
sample surface was mechanically polished to be fresh, and ten
indentations were tested to obtain reliable results.

Electrical Conductivity Test. The electrical conductivity
test was performed using a four-point probe resistivity tester at
20 °C. The specimen has a dimension of 1 × 1 × 52 mm3 with
longitudinal direction parallel to the swaging direction. The
value of conductivity δ is determined as follows:

δ
ρ

= = RS
L

1
(1)

where ρ is the electrical resistivity, R is the resistance, S is the
cross-sectional area, and L is the length between two voltage
probes.

Microstructure Observations. X-ray diffraction (XRD)
measurements were performed on a Bruker-AXS D8
diffractometer with Cu Kα radiation. The 2θ angle ranged
from 40 to 100°, and the scanning speed was 6° min−1.
EBSD analysis was performed on a Zeiss Auriga focused ion

beam/scanning electron microscope equipped with a fully
automatic Oxford Instruments Aztec 2.0 EBSD system
(Channel 5 Software). EBSD sample surfaces were ground to
a mirror-like condition and then electropolished using 2.1 V dc
in 85% H3PO4 + 15% deionized water to remove micro-
scratches and relax strained layers. The scanning step size and
accelerating voltage were 200 nm and 15 kV, respectively.
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The microstructures of the swaged Cu before and after
annealing were examined by a TECNAI G2 20 LaB6 TEM
instrument operating at 200 kV. TEM foils were sliced by an
electrical spark machine, mechanically polished to a final
thickness of about 40 μm, and then thinned by twin-jet
polishing in an electrolyte of phosphoric acid (25%), alcohol
(25%), and deionized water (50%) at about −10 °C. High-
resolution TEM was conducted using a Titan G2 60-300
microscope that was operated at 300 kV.
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